Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
G. Senthil Kumar, ${ }^{\text {a }}$
K. Chinnakali, ${ }^{a} \ddagger$
M. Poornachandran, ${ }^{\text {b }}$
R. Raghunathan ${ }^{\text {b }}$ and

Hoong-Kun Fun ${ }^{\text {c }}$ *
${ }^{\text {a }}$ Department of Physics, Anna University, Chennai 600 025, India, ${ }^{\text {b }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\text {c }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
\# Additional correspondence author, email: kali@annauniv.edu

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.031$
$w R$ factor $=0.091$
Data-to-parameter ratio $=33.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-(4-Methylphenyl)-5-(phenylsulfonyl)perhydro-1,3-thiazolo[3,4-a]pyrrolo[4,5-c]pyrrole

In the title molecule, $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$, the two pyrrolidine rings adopt twisted conformations, while the thiazolidine ring is in an envelope conformation with the N atom at the flap position. In the crystal structure, molecules translated by a unit cell along the a axis are linked by intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into chains. Adjacent chains are interconnected via $\pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions to form sheets parallel to the $a b$ plane.

Comment

Inhibitors of human cytomegalovirus (HCMV) protease have been designed based on the 5-oxo-hexahydro-pyrrolo[3,2b]pyrrole ring system (Borthwick et al., 2000). Pyrrolo[1,2a]pyrrole compounds are used as anti-inflammatory and analgesic agents (Muchowski et al., 1989). Some of the pyrrolo[1,2-c]thiazole derivatives are used as platelet-activating factor (PAF) antagonists (Weissman et al., 1993; Le Naour et al., 1994). They also inhibit cytokine-dependent induction of human immunodeficiency virus (HIV) expression in chronically infected promonocytic cells (Weissman et al., 1993). Since the title compound, (I), also contains a pyrrolopyrrole and a pyrrolothiazole unit it may also exhibit some biological activity.

(I)

Bond lengths and angles in (I) (Fig. 1) agree with those observed in a similar structure, 2-(4-chlorophenyl)-5-(phenylsulfonyl)perhydrothiazolo[3,4-a]pyrrolo[4,5-c]pyrrole, (II) (Senthil Kumar et al., 2006). The sums of the bond angles around atoms $\mathrm{N} 1\left(351.6^{\circ}\right)$ and $\mathrm{N} 2\left(330.1^{\circ}\right)$ indicate $s p^{2}$ and $s p^{3}$ hybridization, respectively. However, atom N1 is slightly out of the plane [deviation 0.257 (1) Å] defined by atoms S2, C1 and C 4 , indicating a slight degree of pyramidalization. The

Figure 1
The structure of (I), showing 60% probability displacement ellipsoids and the atomic numbering scheme. The dashed line indicates a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction.

Figure 2
A view of a hydrogen-bonded (dashed lines) sheet in (I). Only the H atoms involved in hydrogen bonding are shown.
thiazolidine ring adopts an envelope conformation, with atom N 2 at the flap position. The deviation of atom N 2 from the $\mathrm{S} 1 /$ C6-C8 plane is 0.544 (1) A. The two pyrrolidine rings (N1/C1C 4 and $\mathrm{N} 2 / \mathrm{C} 3 / \mathrm{C} 2 / \mathrm{C} 5 / \mathrm{C} 6$) adopt twisted conformations with Cremer \& Pople (1975) puckering parameters q_{2} and φ of 0.361 (1) \AA and $55.5(1)^{\circ}$, respectively, for the pyrrolidine ring

N1/C1-C4, and 0.417 (1) \AA and 192.7 (1) $)^{\circ}$, respectively, for the pyrrolidine ring N2/C3/C2/C5/C6.

The molecular conformation of (I) is stabilized by weak C $\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bonds, and also by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 1) involving the $\mathrm{C} 15-$ C20 phenyl ring (centroid Cg1).

A superimposed fit of the non-H atoms of (I) and the corresponding atoms in (II) gives an r.m.s. deviation of $0.963 \AA$. The conformation of (I) is slightly different from that of (II), as the thiazolidine ring in the latter adopts a twisted conformation, compared with the envelope confornation in (I).

In the crystal structure of (I), molecules translated by a unit cell along the a axis are linked by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) into chains. The C15-C20 phenyl rings of inversion-related molecules in adjacent chains are stacked with a $C g 1 \cdots C g 1^{\text {i }}$ distance of 3.7539 (5) \AA [symmetry code: (i) $-x, 1-y,-z$], indicating $\pi-\pi$ interactions. These interactions link adjacent chains to form double-stranded chains along the a axis. The double-chains are interconnected via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving $\mathrm{C} 9-\mathrm{C} 14$ benzene rings (centroid Cg 2) to form a sheet-like structure parallel to the $a b$ plane (Fig. 2). The patterns of intermolecular hydrogen bonding are different in the crystal structures of (I) and (II).

Experimental

A solution of N-allyl- N-(2-oxoethyl)benzenesulfonamide (1 mmol) and 2-(p-methylphenyl)thiazolidine-4-carboxylic acid (1.2 mmol) in dry toluene (30 ml) was refluxed for 3.5 h . After completion of the reaction, the solvent was evaporatedunder vacuum and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right)$ using a hexane-ethyl acetate (8:2) mixture, to yield the title compound. Compound (I) was recrystallized from ethyl acetate.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=400.54$
Triclinic, $P \overline{1}$
$a=8.9672$ (1) \AA 。
$b=10.4040(1) \AA$
$c=10.6794$ (1) A
$\alpha=88.311(1)^{\circ}$
$\beta=72.555(1)^{\circ}$
$\gamma=83.761(1)^{\circ}$

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.782, T_{\text {max }}=0.881$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.091$
$S=1.04$
8275 reflections
245 parameters
H-atom parameters constrained
$V=944.87$ (2) \AA^{3}
$Z=2$
$D_{x}=1.408 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Block, colourless
$0.69 \times 0.63 \times 0.43 \mathrm{~mm}$

23928 measured reflections 8275 independent reflections 7477 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=35.0^{\circ}$

$$
\begin{aligned}
& \begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0473 P)^{2}\right.} \\
&+0.2769 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.52 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).
$C g 1$ and $C g 2$ are the centroids of the rings C15-C20 and C9-C14, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{~S} 1$	0.95	2.66	$3.1166(8)$	110
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 2$	0.95	2.54	$2.9152(11)$	103
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{Cg} 1$	0.95	2.98	$3.8372(9)$	152
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{i}}$	1.00	2.38	$2.9791(10)$	118
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{Cg} 2^{\mathrm{ii}}$	1.00	2.69	$3.6178(9)$	154

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y,-z$.
The H atoms were positioned geometrically and were treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.2 U_{\text {eq }}($ methyl C $)$. A rotating-group model was used for the methyl group.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF thanks the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118 and USM shortterm grant No.304/PFIZIK/635028.

References

Borthwick, A. D., Angier, S. J., Crame, A. J., Exall, A. M., Haley, T. M., Hart, G. J., Mason, A. M., Pennell, A. M. K. \& Weingarten, G. G. (2000). J. Med. Chem. 43, 4452-4464.
Bruker (2005). APEX2 (Version 1.27), SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Le Naour, R., Clayette, P., Henin, Y., Mabondzo, A., Raoul, H., Bousseau, A. \& Dormont, D. (1994). J. Gen. Virol. 75, 1379-1388.
Muchowski, J. M., Galeazzi, E., Greenhouse, R., Guzman, A., Perez, V., Ackerman, N., Ballaron, S. A., Rovito, J. R., Tomolonis, A. J. \& Young, J. M. (1989). J. Med. Chem. 32, 1202-1207.

Senthil Kumar, G., Chinnakali, K., Poornachandran, M., Raghunathan, R. \& Fun, H. K. (2006). Acta Cryst. E62, o3799-o3801.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Weissman, D., Poli, G., Bousseau, A. \& Fauci, A. S. (1993). Proc. Natl Acad. Sci. USA, 90, 2537-2541.

[^0]: © 2006 International Union of Crystallography All rights reserved

